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Scaling Laws for all Liapunov Exponents: 
Models and Measurements 
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We introduce simple diamond models of random symplectic matrices in order 
to study the scaling laws of all Liapunov exponents. These universal properties 
appear in physical problems that are modeled by transfer matrices: dynamical 
systems, random potentials, random fields, etc. Numerical experiments for the 
general case are in agreement with the results derived from the models. 
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1. INTRODUCTION 

We consider the following symplectic map: 

q .+ l  = q .  + P .  
(1) 

Pn+ l = Pn + ef(qn+ l) 

where q., p,, e R k, and f is a smooth function. It can be considered as the 
Poincar6 map of a Hamiltonian system. The corresponding tangent map is 
a 2k x 2k symplectic matrix-valued map of the form 

An(e)= ,(elAn l +ld,,) (2) 

where 1 is the k xk identity matrix and A. is the Jacobian of f at 
Cn = (q., Pn). For  these purposes it is therefore natural to consider sym- 
metric matrices A. whose nonzero elements are only the a~ with li-jl <~ 1, 
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and akl = alg. The ordered product of those matrices naturally appear in 
this way. Now, we replace the product of the matrices along the orbit by a 
product of random matrices of the form (2), this can be considered as an 
approximation of the dynamics that turns out to present the correct 
behavior in certain regimes. (1 3) 

The scaling behavior of the maximum Liapunov exponent as a 
function of e for the infinite product of random matrices of the form (2) has 
been investigated numerically (4'5) as well as analytically. (6) These authors 
obtain •max OC ~,6 with either/3 = 1/2 or/3 = 2/3, depending on whether the 
common mean value of the elements of A, is positive or zero. 

Here we present a simple model that allows us to understand the 
behavior of all the Liapunov exponents. The result is also of interest for the 
localization properties in solid state physics. The discrete Schr6dinger 
equation with random potentials for a strip geometry gives rise to products 
of matrices of the same type. Numerical experiments show that our models 
reproduce all known possible scaling behaviours of Liapunov exponents. 

Considering the random process as an ergodic stationary process, we 
recall that Liapunov exponents can be defined as the logarithm of the 
eigenvalues of the matrix, 

A = lim [-~/~m(~)* ~/~m(C,)] 1/2m (3) 
m ~ o v  

for a set of measure one of the parameters in the random space. Here 

~d~] m(~) = '/~m(8) '~m--1(~)  " ' "  /~1(~) (4)  

It is well known that these exponents are related to the rate of exponential 
growth of the volume forms in phase space. 

Our numerical computations show that all the Liapunov exponents 
but the first generically scale with an exponent/3 = 2/3. In the next section 
we introduce a model that is able to reproduce these scaling laws. It is a 
"zeroth-order" model in the sense that it eliminates the possible couplings 
between eigenspaces, allowing us to perform a block reduction and to treat 
the problem as independent intermittent-type modelsJ 7) 

The model gives a hint for the construction of peculiar interactions 
among eigenspaces that modify the quoted /3=2/3 law. In fact, it is 
possible to devise models irreducible to a block matrix form, which give 
/3 = 1/2 law for some smaller Liapunov exponents (see Fig. 2). 

2. T H E  D I A M O N D  M O D E L  

Let us begin with the simplest case of the matrices of the form (2) in 
the case k = 2, i.e., 4 • 4 matrices. We call a diamond a symmetric matrix 
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with identical elements on the diagonal. We take the A, to be a diamond 
random sequence, i.e., 

( a ,  bn) (5) 
A~ = bn an 

where an, b, are independent, identically distributed random variables. 
Note that, since the A,, in (2) must be symmetric, the only restriction of 
diamonds with respect to the general case is the equality of the two 
diagonal terms. It is clear from the definitions that no change is introduced 
in this study if we perform n-independent unitary transformations: 

(6) 

On the other hand, if V is a 2 x 2 unitary matrix, then U = V| 1 is a 4 x 4 
unitary matrix, and the corresponding action on the matrices of the form 
(2) reduces to the change 

An~An-=V-IAn V (7) 

We can therefore perform a first transformation taking 

(an bn) 
A,,= bn a,,/ 

into 

where s~ = an + bn and r,, = a~ - b, are again independent random variables 
with the mean value of sn zero only if the two variables are of zero mean, 
but with the mean value of r,  equal to zero. 

A second unitary transformation takes Nn(e) into the following block 
matrix: 

i1 ~ =  ~s~ l + e s n  0 
0 1 (9) 

~ 0 ~rn 1 + ern 

As we can see, each diagonal block matrix is again of the form (2). Now it 
is clear what happens in this case. Following ref. 6, if the mean values of an 
and bn are zero, so is the mean value of sn and, since we have already said 
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that the mean value of rn is always zero, we get a common law for the two 
(positive) Liapunov exponents of the form 2 oc e 2/3. If, instead, the mean 
value of the an and bn is nonzero, we get a maximum Liapunov with a 
scaling as e 1/2, but a second Liapunov scaling as e2/3. It is not difficult to 
obtain 2k-dimensional models that reduce after a convenient transfor- 
mation to the block form (9) of the matrices. 

To be more explicit, we define a diamond for k > 2  (k even) as the 
tensor product of 2 x 2 diamonds, since it is then clear that we can again 
diagonalize the An by means of an n-independent unitary transformation. 
Furthermore, the well-known formula of the eigenvalues of a tensor 
product shows that their means follow the same simple rule as in the case 
of 2 x 2 diamonds. 

Once one has reduced the k x k matrix An to a diagonal form with 
random elements by some k x k  unitary transformation, it can be seen 
straightforwardly that the 2k x 2k matrix U with elements 

but 

u ~ = 0  

IAi,2i-- 1 = 1 i f  i ~< k 

ui,2(i k ) = l  if i > k  

takes it into a matrix with 2 x 2 blocks as in (9). Therefore, composing ran- 
dom variables with zero and nonzero means, it is easy to have examples of 
models with the j f i rs t  Liapunov exponents having a scaling law 2 oc e 1/2 
(O<~j~k) and the remaining k - j  with the scaling law 2 oc e 2/3. The fact 
that for small e the Liapunov exponents with these scaling laws arrange in 
this order comes from the law itself. 

3. R E M A R K S  ON T H E  G E N E R A L  CASE 

We come back for a moment to the (4 x 4)-dimensional case. It is 
known that the area of a generic parallelogram in R 4 asymptotically grows 
as the exponential of rn(21 +22) as the map (2) iterates m times, the 2i 
being the two positive Liapunov exponents. Therefore, up to a renor- 
malization, the second Liapunov exponent is given by the asymptotic 
behavior of the projection of the iterate of one initial vector in a direction 
normal to the iterate of another vector. In higher dimension, taking a 
suitable number of independent vectors, the same type of construction 
gives each of the remaining Liapunov exponents. 

Taking a collection of n linearly independent vectors, our model 
suggests that the process corresponding to the projection of a vector in the 
normal direction to the hyperplane containing the preceding vectors is 
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generically a process of zero mean. Numerical computat ions confirm this 
suggestion, allowing to verify quantitatively that all projections in fact 
fluctuate with zero mean. 

The most general situation corresponds to the case where there is 
some coupling between eigenspaces, which amounts to having nonzero off- 
diagonal blocks in (9). Numerical simulations show that in this case, at 
least concerning scaling laws, this fact introduces only small fluctuations 
and that therefore our "zeroth-order" model is a crude but significant 
approximation of the generic case: the asymptotic behavior of the com- 
plicated process corresponding to the product of symplectic random 
matrices should be as like the diamond independence, with zero-mean 
intermittent processes in all but one block. 

4. N U M E R I C A L  E X P E R I M E N T S  

We have computed the Liapunov exponents up to the case of 8 x 8 
matrices, using a well-established procedure, (8) with "time" relaxation of 

I n ~  i 
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Fig. 1. Scaling laws for the Liapunov exponents of products of random symplectic 8 x 8 
matrices in the general case as a function of the perturbation parameter e on a log-log scale. 
The slopes 1/2 and 2/3 are reported for comparison. For graphical purposes the data have 
been rescaled: (A) a22, (�9 b)~3, (• C-~4, with a = e  15, b = e  1"8, c=e 2'4. 
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order of 10 7 iterations and corresponding stabilization tests. The elements 
of the A, matrix were chosen with a uniform probability distribution 
within a length-one interval centered around the mean value. However, it 
was verified that, in general, the choice of probability distribution does not 
affect the scaling laws apart  from the first moment,  which modifies only the 
scaling law of the maximum Liapunov exponent, as said before. 

However, particular choices of the correlations among the elements of 
the An matrices give rise to anomalous scaling laws for the Liapunov 
exponent spectrum. We reproduce only two of these results, since there are 
no significant differences for all the remaining experiments. 

In Fig. 1, we see that the scaling laws in the 8 x 8 general case are in a 
very good agreement with the prediction of the model in the case that all 
but one of the random variables sn(i), i=  1, 2,..., k, are of the "difference 
type," i.e., of zero mean. 

Another interesting case is that where the diagonal elements of the An 
are taken to be the sum of the row elements. This leads after unitary trans- 
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Fig. 2. Scaling laws for the Liapunov exponents of products of random symplectic 6 x 6 
matrices: the general case 21, 22, 23 and generalized diamond 2~, 22*, 2~. The maximum 
exponents differ only slightly, but 22* shows a 1/2 scaling law instead of 2/3 for 22. Again the 
data have been rescaled for graphical purposes: (x) ei-222, ( I )  e1"823, (�9 e122~. The slopes 
1/2 and 2/3 are reported for comparison. 
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formation of the type introduced in Section 2 to a generalized diamond 
model (diamond flush) in the presence of n-independent coupling among 
eigenspaces. Whereas in the general case of matrices of type (2), as expec- 
ted from the previous analysis, only 2ma x = 21 has a scaling law as e t/2, in 
the case of the generalized diamond, by choosing appropriately the mean of 
independent elements, we are able to produce two Liapunov exponents 
with the same scaling law e 1/2, as we show in Fig. 2 for the case of 6 x 6 
matrices. 

5. C O N C L U S I O N  

Diamond models produce all known scaling laws for the Liapunov 
exponents of products of random symplectic matrices. They even suggest 
how to introduce correlations among the elements of the matrices such as 
to modify the scaling laws (as done for the diamond flush). These results 
can be easily generalized to matrices of a form different from (2), for 
instance, transfer matrices of a Schr6dinger operator  on a strip lattice at 
the band edge. 
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